ENERGY ANALYSIS OF THE STABILITY
OF PLANE-PARALLEL FLOWS WITH AN INFLECTION
IN THE VELOCITY PROFILE

A, M, Sagalakov and V. N. Shtern UDC 532.501.34+532.517.2

Energy estimates are obtained for the critical Reynolds numbers for a number of flows having
velocity profiles with an inflection point. Flowswitha cubic velocity profile, a free submerged
jet, and a jet in a channel are examined. It has been detected that the energy estimatesarenot
more than two- to threefold less than the corresponding critical Reynolds numbers computed
by linear theory.

1. There exist two approaches to the investigation of the stability of laminar stationary flows [1]. In
linear stability theory the behavior of small perturbations is examined and conditions under which these per-
turbations grow with time are studied. The energy method permits the determination of under what condi-
tions arbitrary perturbations will damp out monotonely. Both these approaches permit extraction of bands
of parameters between the explicit stability and explicity instability domains within which the {ransitionfrom
the laminar to the turbulent flow modes or to another laminar flow mode is performed. This "theoretical
band" turns out to be large for pressure flows in tubes and channels, Thus, for example, for Poiseuille flow
in a plane channel, the energy analysis yields R,*=49.9 [2] and the linear theory R,°=5772 [3], while the
experimental value of the critical Reynolds number is R,~1000 (the Reynolds number is here determined
over half the width of the channel and the maximum stream velocity). The so-called "paradoxical® effect
of the viscosity is characteristic in these examples, i.e., the viscosity results here not only in energy dis-
sipation but also contributed to the origination of growing Tollmien-Schlicting waves. The situation is dif-
ferent if the instability is due to the destabilizing influence of definite mass forces. For example, for a con-
vective instability of the flow of a fluid heated from below [4], the critical parameters computed by an en-
ergy method turn out to be quantities of the same order as those given by linear theory. No difference be-
tween R *x and R,° is generally obtained in a number of cases in [5] where the Taylor instability of the flow
between rotating coaxial cylinders is considered.

This paper is devoted to an energy analysis of the stability of a number of plane-parallel flows with
velocity profiles having an inflection point. An inviscid instability is characteristic here, and the viscosity
turns out to be the ordinary stabilizing effect. The magnitudes of R ° are comparatively low and, hence, it
can be expected a priori that the energy estimates of the critical Reynolds numbers will not differ radically
from the results of linear analysis. The values of R,° were three- to fourfold greater than the correspond-
ing values of R, * for a number of artificial profiles in [6].

An energy stability analysis first performed by Orr [7] and given a foundation by Serrin[8] consists of
the fact that the equation for the energy of an arbitrary perturbation is considered. In the viscous fluid case
it is
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The variables are given here in dimensionless form, U; and vj are the components of the fundamental
velocity field and the perturbation field, respectively, Integration is over some characteristic volume on
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whose surface the velocity perturbations vanish. It is furthermore assumed that v; is not generally a solu-
tion of the equation for the perturbations, but is some arbitrary velocity field satisfying the mentioned bound-
ary conditions and the continuity requirement

6vi/0xi =0

Such a field is called a trial field. Serrin showed that if R is less than a definite quantity then 89 E/8t
<0 for any trial velocity field. Under these conditions the energy of any perturbation will decrease mono-
tonely with time. The purpose of the energy analysis is to determine the least Reynolds number R_x* for
which 9E /ot will first vanish for some trial field (or some trial fields). In other words, find the R for which

maxdE/dt =0

¥

For R=R_* the energy of an arbitrary perturbation will diminish strictly monotonely, with the excep-
tion of some times when 9E /3t=0. The Euler-Lagrange equations for this variational problem are

oy = B (090, g w 0.2

2 \oz; oz Bz
Here ¢ is a Lagrange multiplier which is the analog of the hydrodynamic pressure.

2, Turning to the case of a plane channel and performing a Fourier transformation in the coordinates
x and z (the direction of the x axis agrees with the stream direction), we obtain an eigenvalue problem in R
' — k=Y, RU'v + iah, v"'—kw =1, RUu-| N
W —kw=iBh  (—1<y<Y) 2.1)
lau4+iBw+v' =0 @EhH=r(ED=wE)=0)

Here u, v, w, A are (x,¥, z) components of the Fourier transforms of vj and ¢; o, 8, k are the x and z
components of the wave vector and its modulus, respectively, and the prime denotes differentiation with re-
spect to y. It is convenient to reduce the system (2.1) to one equation. Introducing the angle g between the
main flow velocity vector and the perturbation wave vector (hence o=k cos 9, g=k sin 9), we obtain

(d%z-—z - kz) [% (diy: — kz)z v ikRcos (v' -+ % v)] 4 kzmzin_z_? Uv =90

(2.2)
v=v =v" =2k =0 a y=-41

Let us list some useful properties of the problem.

1, There exist only real eigenvalues of R. In order to see this, it is sufficient to multiply the first
three equations in (2.1) by u*, v*, w*, respectively (here the asterisk denotes the complex conjugate), to add
them, andintegrate with respect to y over the whole interval.

2. In addition to the eigenvalue R and the eigenfunction v there also exists the eigenvalue —Rwith the
eigenfunction v*. In order to see this, it is sufficient to take the complex conjugate in (2.2). It therefore is
meaningful to speak only of seeking the minimum of the absolute value of the eigenvalue R.

3. It is sufficient to study the behavior of R in the quadrant 0=¢ 51/2 m (o> 0, §>0), since it is seen
from (2.2) that a change in sign of 9 as well as a ¢ change in ¢ with a subsequent complex conjugate of (2.2)
will result in the very same spectral problem.

4. For k«1 the eigenvalues are R~1/k. This can be seen by introducing R, =kR and then neglecting
terms containing k in (2.2).

5. The case k>1 merits more detailed discussion, Making the transformation R=kR', y +=ky,and
then allowing k to tend to infinity, we obtain from (2.2)
R+25in? §

(g — 1) [ s — 1 v 1B 08 00 )]+ 5720 0, = 0

2.3)

v, = v+l — U+”' . 2v+u =0 at Yy, = i oo
Ve =V (), U,.=U(y)

If the eigenvalue problem (2.3) has non-trivial solutions, then R~k asymptotically for k>1, However,
in some cases (2.3) has only a trivial solution and the absolute value of R increases more rapidly with the
growth of k than according to a linear law.
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The last two properties indicate that R reaches a minimum for k~1, i.e., when the wave number is
on the order of the reciprocal characteristic dimension of the problem (moderatevalues of U! are in mind).

3. The eigenvalues are computed numerically in the domain k~ 1 until R becomes an asymptotic de~
pendence for small and large k. For large R a small parameter appears in the highest derivative in (2.2),
which results in the difficulties customary in such cases. Although the energy estimates R, * are compara-
tively small, as a rule, it should be kept in mind that there is an R? term in (2.2). For a detailed spectral
analysis it is generally desirable to have a universal numerical method suitable for both small as well as
large R, The differential factorization method satisfies these conditions [9]. Performing a great number of
eigenvalue computations on an electronic computer demands the selection of an economical factorization
scheme, The standard modification [9] results for (2.2) in very awkward right sides in the system of equa-
tions for the factorization coefficients. M. A, Gol'dshtik and V. A, Sapozhnikov proposed the following ap-
proach to a problem of similar nature. The factorization method is not related to the kind of boundary con-
ditions, but is found from the demand for greatest simplicity in the system of differential equations for the
factorization coefficients, The initial data for this system are obtained by using integration of the initial
linear equation in a small interval of boundary points. These assumptions are realized as follows in appli-
cation to (2.2).

Let us introduce the function

Z(d'z

Y=g T kz)zv — 2ia (v' - v) (3.1)

20U

By virtue of the boundary conditions (2.2) 5 (+1)=0. Lef us define the factorization scheme by the re-

lationship
v Ay Ay Ay [0
V)= 4n 4y Apl{v 3.2)
Y Ay Ay Ay )\

We obtain the system of differential equations for Ajj by differentiating (3.1) and using (2.2) and (3.1).
Itis
A, = Y,RU Ay, — ApAy + YoiaRU" — i
4y = l/zBU'Azz — 4y - Apdis — idRU’
Ays' = Y,RU Agg — 4y — Ays® + 282
Ay = Ay — ApAss, 4y = Ay — Ay — Appdys 3.3)
Ayg' = Agg — Ay — Aj5dag ‘
A3 = KAy — Apdgs — YHoP*RU’
Ag' = KAy — Ay — ApAys, Agy' = P4y, — Ay — Appdyg

The Cauchy problem is considered for the system (3.3). The initial conditions near the boundary points
are determined by using (2.5) and (2.2). Denoting the results of integrating (3.3) from one boundary point by
the subscript plus below, and from the other by the subscript minus, we obtain the characteristic equation
for R:

F(R)y=det(d, —4) =0

at any inner point of the interval (—1,1). In a number of cases it is useful to select the root of the equation
U' () =0 as such a point if it lies within the interval, since this point is the analog of the critical point in the
linear theory of hydrodynamic stability. For symmetric U profiles it is sufficient to consider symmetric
and antisymmetric solutions of (2.2). In this case the characteristic equation is

F(R)=As (Andss — 4554,) =0

on the channel axis y=0. For the antisymmetric solutions Ag, =0, and the expression in the parentheses van-
ishes in the symmetric case,

For some values of k and ¢ the least positive root of F(R)=0 is found initially, and then a sufficiently
compact mesh Rk, 0) is constructed by continuity, and the magnitude and position of the minimum of this func-
tionare determined, If need be, these parameters are refined, The numerical analysis did not disclose any
intersection of the spectral branches for the considered flows,
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The computations were carried out ona BESM-6. The eigenvalues were found to prescribed accuracy
(three significant figures).

A computation of Couette~Poiseuille flow stability
U=(01—-4)1 -+ Ay

was mainly used to check the numerical method used. In the Poiseuille flow case (A=0) the calculations
vielded R,*=49.9, k,=2.04,which agrees with the results obtained earlier [2], while R, *=20.6, k,=1.56 was
found for Couette flow (A=1), as in [4]. The dependences R_(A) (curve 1) and k_(A) (curve 2) are repre-
sented in Fig. 1. The energy estimates of R, diminish as A grows,in contrast to the linear theory results
[10] (for small A an increase in R still holds; however, it is quite insignificant). In all the cases consid-
eredhere andbelow, the minimum R is achieved for §= /2, i.e., the perturbations whose wave vector is per-
pendicular to the main flow velocity vector are most "dangerous." No analytic proof of this fact has been
obtained, however,

4, The flow of a viscous, heat-conducting fluid between vertical parallel planes heated to different tem-
peratures is an example of a plane-parallel nonsymmetric flow with an inflection in the velocity profile,
The velocity profile has the form

U=y—¢

If the Prandtl pumbers are small, it is possible to limit oneself to purely hydrodynamic perturbations
in the stability analysis. Within the scope of linear theory this analysis has been carried out in [11], and
later in [12]. The critical parameters are R, °=82, o, =k, =1.32.

The energy analysis yields R =29, By =k,=1.8. If only two-dimensional perturbations are examined,
then R, *=58, @,=1.9. The level lines R(k, §)=const are presented in Fig, 2, Here the asterisk denotes the
position of minimum R, The level lines (curves 1, 2, 3, 4) correspond to R=35, 40, 50, 80. The level line
picture is typical for all the flows considered herein, ‘
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The critical numbers R,° and R, * differ by less than threefold, while the difference for pressure flow
is several ordersg of magnitude. The experimental measurements [12] which were conducted for the Prandtl
number P=0.71 yielded R, =91 (L +0.1), k,=1.87, which somewhat exceeds the linear theory results. This
can be associated with errors in the tests,

Still smaller discrepancies between R * and R,° are obtained for jet type flows.
Let us examine the stability of the flow
U=1—1thYy (—2<y<a) @.1)

The velocity profile (4.1) is a self-similar Schlichting solution for a plane submerged jet. As before,
the adhesion conditions at y=+a are the boundary conditions for the perturbations here. This flow, which
we provisionally call a jet in a channel, is considered here as the model of a symmetric flow with an inflec-
tion point in the velocity profile. As is seen from (4.1), the Reynolds number is defined by means of the jet
halfwidth and the maximum velocity.

A number of results for the case ¢=6 is presented in Fig. 3. Curve 1 is the dependence R(k) com-
puted by an energy method for §=%r. Curve 2 corresponds to plane perturbations (§=0). The dependence
Rk) for 9=1/2'n' of the next spectral branch (antisymmetric perturbations in v) is pictured by the curve 3. A
neutral curve (curve 4) computed by linear stability theory is presented in Fig. 3 for comparison. It corre-
sponds to perturbations with 6 =0; by virtue of the Squire theorem [1], they are most dangerous in the linear
case. Let us present values of the critical parameters for comparison. The energy method (9=1/21r, abso-
lute minimum) yields R,*=3.7, k,=0.327, the energy method (§=0),R,=4.75, k,=0.345, and linear theory
(6=0),R, =6.25, k, =0.46.

The asymptotic behavior of R(k), determined by the energy method, has the general form for all the
spectral branches considered and for all 9. In conformity with property 4 (see Sec. 2), R is inversely pro-
portional to k for small k, while R increases more rapidly for large k than according to the linearlaw. Here
R is approximately proportional to k% The minimum value of R for antisymmetric perturbations, or 6.1, is
reached for k=0.4, i.e., for a rather larger wave number as compared with the case of symmetric perturba-
tions. For large k the difference between the Reynolds numbers for symmetric and antisymmetric perturba-
tions tends to zero. This indicates that the shortwave perturbations differ from zero in practice only in
some subdomain of the interval —1=y=1, and this subdomain does not include the pointy =0, so that the sym-~
metry or antisymmetry conditions are inessential on the axis,

Computations showed that the energy estimates of the critical Reynolds number depend substantially
on the ratio between the channel width and the jet width ¢, and the Reynolds number tends to zero as a —>w.
Presented in Fig. 4 is the dependence R, (@) (curve 1) in the band 5=¢=100. Fora>10, the relationship
R, ~a~%5 jg satisfied approximately. It is characteristic that the dependence of the critical wave number
on a curve {curve 3) has the form k,~1/a, i.e., the wave number computed over to the halfwidth of the chan-
nel remains constant and approximately equal to 2.43 as the jet thins out,while the Reynolds number aR com-
puted over the channel halfwidth grows as the jet thins. For sufficiently large wave mumbers, the eigenvalue
Ris already independent of the channel width. Stratification of the curves R(k) with respect to a is not ob-
served in the considered band for k>1. This indicates that the subdomain where the shortwave perturba-
tions are different from zero in practice does not include the boundary points but is apparently concentrated
in the neighborhood of the inflection point of the velocity profile. But the critical numbers R, correspond
to too small k in this case and depend on the channel width,

Since the critical perturbations "sense" the channel walls, i.e., for them it is essentialat whatdistance
the boundary conditions are formulated, then the nature of the boundary conditions should visibly also affect
the results.

It is interesting to examine a jet in unbounded space, and even more so since a number of linear stabil-
ity theory papers has been devoted to it. The self-similar Schlichting solution for a jet

1 —th’a y<—aq
Uy)={1—thly (—a<y<o)
1 —th?2a =09

is also taken as the basis here,
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The boundary conditions are posed at infinity and reduce to the demand for damping. They can be re-
ferred to y=+a. For vy | >a U'=0 in the system (2.1), by eliminating A,it is possible to arrive at

v 2k2 U” _+ k‘U —— 0, ur/ . kzu — ZTO; (U”’ . kzvl) (4.2)

It is easy to see that three linearly independent solutions of @.2) are found which damp out at infinity.
For example, we have for y<—a

v=e¥ u=0 4.3)
V= yeky, U= %yeku (4.4)
v=0, u=ev 4.5)

These fundamental solutions can be used to calculate the factorization coefficients Ajj, by continuing
them within the interval in conformity with (2.2) and by solving (3.2) at the point y=—a +¢, where ¢ is some
small quantity (see Sec., 2).

Presented in Fig. 4 are the dependences R, (a) (curve 2) and k,(a) (curve 4) in the case of a free jet.
_The critical Reynolds numbers are approximately one and one-half times less than for a jet in a channel.
As before the quantities k, decrease proportionately to @, where k,a=1.24, It is characteristic that the rel-
ative difference between the results for R, and k for a free jet and a jet in a channel does not tend to zero
asa-—roo.

The linear analysis also discloses a dependence of R.° on a.

Thus, R,°=17.5 is obtained in [13] for =3, and R,°=4 in [14] for a=6. The energy method yields R, *=
- 8.9 for a=3, and R,*=2.2 for a=6 in these cases.

On the basis of the analysis conducted, it can be concluded that, for a number of velocity profiles hav-
ing an inflection point, the critical Reynolds numbers computed by the energy method are less than the cor-
responding quantities R,° by not more than two- to threefold. Therefore, in these cases the energy method
in combination with linear theory permits obtaining estimates of the critical Reynolds numbers which are
satisfactory for 2 number of engineering applications.

The authors are grateful to M. A. Gol'dshtik for attention to the research.
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